
In ecology, the competitive exclusion principle, sometimes referred to as 

Gause's law of competitive exclusion or just Gause's law. 

gauses exclusion principle states that when two closely related  

species will compete with each other for the same resources , then the  

superior one will get acess to the same and the inferior one will get  

eliminated by the same process. 

 

 

Competitive Exclusion Principle: 

The principle has been variously named after its principal authors – Gause’s principle (Lack, 

1944), Volterra – Gause principle (Hutchinson, 1957) and Hardin’s competitive exclusion 

principle. Gause’s competitive exclusion principle states that no two species can coexist if they 

occupy the same niche. In other words, an ecological niche cannot be simultaneously and 

completely occupied by stabilized populations of more than one species. 

In his classic experiment Gause (1934) first grew Paramecium caudatum and Paramecium Ha in 

separate cultures and found that each species grew in numbers according to the logistic equation. 

However, P. aurelia grows in numbers more quickly than P. caudatum and shows more 

individuals in the same volume of culture medium. 

But when he grew the two species together in same culture volume, he observed that initially 

both species grew in numbers, but eventually P. caudatum declined and became extinct (Fig. 3.6 

). He repeated has experiment and found that P. aurelia always won the competition between the 

two species. Gause attributed the result to the nee of ‘but a single niche in the conditions of the 

experiment’. 

There are other examples 

illustrating the principle of Gause. Park( 1948,1954,1962) conducted laboratory experiments on 

two species of flour beetle, Tribolium confusum and Tribolium castaneum. He found that in 

mixed cultures one species always “wins” over another. But it depended on the environmental 

conditions. T .castaneum always wins (or T. confusum becomes extinct) under conditions of high 

temperature (34°C) and high humidity (70% R.H), while T. confusum always (T. castaneum 

becomes extinct) under cool-dry climate, i.e., under conditions of low temperature and low 

humidity (30% R.H.). Under some different environmental conditions (Table 3.1) time’s one 

species survived, sometimes the other. This leads us to conclude that species can coexist even in 

the face of interspecific competition provided that their niches do not overlap too much. 
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Competition and Character Displacement: 

Character displacement is defined as the divergence in the characteristics of two otherwise 

similar species where their ranges overlap, caused by the selective effects of competition 

between the species in the area of overlap. 

In the phenomenon of character displacement, the character traits of two closely related species 

differ more when they occur in sympatry (two species coexisting within the same geographic 

area) than in allopatry (when their distributions do not overlap, they are said to be allopatric). 

The ground finches (Geospiza spp.) of Galapagos Islands, first described by Darwin, furnish an 

example of character displacement. Character displacement occurs when inter-specific 

competition results in natural selection causing changes in the morphology of two closely related 

species. 

PREDATOR-PREY DYNAMICS: LOTKA-VOLTERRA  

Introduction: The Lotka-Volterra model is composed of a pair of differential equations that 

describe predator-prey (or herbivore-plant, or parasitoid-host) dynamics in their simplest case 

(one predator population, one prey population). It was developed independently by Alfred Lotka 

and Vito Volterra in the 1920's, and is characterized by oscillations in the population size of both 

predator and prey, with the peak of the predator's oscillation lagging slightly behind the peak of 

the prey's oscillation. The model makes several simplifying assumptions: 1) the prey population 

will grow exponentially when the predator is absent; 2) the predator population will starve in the 

absence of the prey population (as opposed to switching to another type of prey); 3) predators 

can consume infinite quantities of prey; and 4) there is no environmental complexity (in other 

words, both populations are moving randomly through a homogeneous environment).  

Importance: Predators and prey can influence one another's evolution. Traits that enhance a 

predator's ability to find and capture prey will be selected for in the predator, while traits that 

enhance the prey's ability to avoid being eaten will be selected for in the prey. The "goals" of 

these traits are not compatible, and it is the interaction of these selective pressures that influences 

the dynamics of the predator and prey populations. Predicting the outcome of species interactions 

is also of interest to biologists trying to understand how communities are structured and 

sustained.  

Question: What are the predictions of the Lotka-Volterra model? Are they supported by 

empirical evidence?  
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Variables:  

P number of predators or consumers 

N number of prey or biomass of plants 

t time 

r growth rate of prey 

a' searching efficiency/attack rate 

q predator or consumer mortality rate 

c predatorís or consumerís efficiency at turning 

food into offspring (conversion efficiency) 

Methods:  We begin by looking at what happens to the predator population in the absence of 

prey; without food resources, their numbers are expected to decline exponentially, as described 

by the following equation:  

. 

(1) 

This equation uses the product of the number of predators (P) and the predator mortality rate (q) 

to describe the rate of decrease (because of the minus sign on the right-hand side of the equation) 

of the predator population (P) with respect to time (t). In the presence of prey, however, this 

decline is opposed by the predator birth rate, caíPN, which is determined by the consumption 

rate (aíPN, which is the attack rate[a'] multiplied by the product of the number of predators [P] 

times the number of prey [N]) and by the predatorís ability to turn food into offspring (c). As 

predator and prey numbers (P and N, respectively) increase, their encounters become more 

frequent, but the actual rate of consumption will depend on the attack rate (aí). The equation 

describing the predator population dynamics becomes  

. 

(2) 

The product ca'P is the predator's numerical response, or the per capita increase as a function of 

prey abundance. The entire term, ca'PN, tells us that increases in the predator population are 

proportional to the product of predator and prey abundance.  

Turning to the prey population, we would expect that without predation, the numbers of prey 

would increase exponentially. The following equation describes the rate of increase of the prey 

population with respect to time, where r is the growth rate of the prey population, and N is the 

abundance of the prey population:  



. 

(3) 

In the presence of predators, however, the prey population is prevented from increasing 

exponentially. The term for consumption rate from above (aíPN) describes prey mortality, and 

the population dynamics of the prey can be described by the equation  

. 

(4) 

The product of a' and P is the predator's functional response, or rate of prey capture as a function 

of prey abundance (see TYPE I or TYPE II functional response modules). Here the term a'PN 

reflects the fact that losses from the prey population due to predation are proportional to the 

product of predator and prey abundances.  

Equations (2) and (4) describe predator and prey population dynamics in the presence of one 

another, and together make up the Lotka-Volterra predator-prey model. The model predicts a 

cyclical relationship between predator and prey numbers: as the number of predators (P) 

increases so does the consumption rate (a'PN), tending to reinforce the increase in P. Increase in 

consumption rate, however, has an obvious consequence-- a decrease in the number of prey (N), 

which in turn causes P (and therefore a'PN) to decrease. As a'PN decreases the prey population 

is able to recover, and N increases. Now P can increase, and the cycle begins again. This graph 

shows the cyclical relationship predicted by the model for hypothetical predator and prey 

populations.  
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Huffaker (1958) reared two species of mites to demonstrate these coupled oscillations of 

predator and prey densities in the laboratory. Using Typhlodromus occidentalis as the predator 

and the six-spotted mite (Eotetranychus sexmaculatus) as the prey, Huffaker constructed 

environments composed of varying numbers of oranges (fed on by the prey) and rubber balls on 

trays. The oranges were partially covered with wax to control the amount of feeding area 

available to E. sexmaculatus, and dispersed among the rubber balls. The results of one of the 

many permutations of his experiments are graphed below. Note that the prey population size is 

on the left vertical axis and the predator population is on the right vertical axis, and that the 

scales of the two are different (after Huffaker, 1958 [fig.18]).  

 

Interpretation: It is apparent from the graph that both populations showed cyclical behavior, 

and that the predator population generally tracked the peaks in the prey population. However, 

there is some information about this experiment that we need to consider before concluding that 

the experimental results truly support the predictions made by the Lotka-Volterra model. To 

achieve the results graphed here, Huffaker added considerable complexity to the environment. 

Food resources for E. sexmaculatus (the oranges), were spread further apart than in previous 

experiments, which meant that food resources for T. occidentalis (i.e., E. sexmaculatus) were 

also spread further apart. Additionally, the oranges were partially isolated with vaseline barriers, 

but the prey's ability to disperse was facilitated by the presence of upright sticks from which they 

could ride air currents to other parts of the environment. In other words, predator and prey were 

not encountering one another randomly in the environment (see assumption 4 from the 

Introduction).  

Conclusions: A good model must be simple enough to be mathematically tractable, but complex 

enough to represent a system realistically. Realism is often sacrificed for simplicity, and one of 

the shortcomings of the Lotka-Volterra model is its reliance on unrealistic assumptions. For 

example, prey populations are limited by food resources and not just by predation, and no 

predator can consume infinite quantities of prey. Many other examples of cyclical relationships 

between predator and prey populations have been demonstrated in the laboratory or observed in 

nature, but in general these are better fit by models incorporating terms that represent carrying 



capacity (the maximum population size that a given environment can support) for the prey 

population, realistic functional responses (how a predator's consumption rate changes as prey 

densities change) for the predator population, and complexity in the environment.  

Predator-Prey Population Cycles 
Predator and prey populations  
exhibit fluctuations described as  
the predator “tracking” the prey.  
The classic example is the  
snowshoe hare and lynx  
populations. Note that the lynx  
population (green) peaks slightly  
behind the hare population  
(blue), which is the lynx’s  
primary food source. The hare  
cycle is mainly driven by excess  
predation by the lynx, but other  
factors, such as a winter food  
shortage, may also be important 

 

 


